DNA Replication and Strand Asymmetry in Prokaryotic and Mitochondrial Genomes

نویسنده

  • Xuhua Xia
چکیده

Different patterns of strand asymmetry have been documented in a variety of prokaryotic genomes as well as mitochondrial genomes. Because different replication mechanisms often lead to different patterns of strand asymmetry, much can be learned of replication mechanisms by examining strand asymmetry. Here I summarize the diverse patterns of strand asymmetry among different taxonomic groups to suggest that (1) the single-origin replication may not be universal among bacterial species as the endosymbionts Wigglesworthia glossinidia, Wolbachia species, cyanobacterium Synechocystis 6803 and Mycoplasma pulmonis genomes all exhibit strand asymmetry patterns consistent with the multiple origins of replication, (2) different replication origins in some archaeal genomes leave quite different patterns of strand asymmetry, suggesting that different replication origins in the same genome may be differentially used, (3) mitochondrial genomes from representative vertebrate species share one strand asymmetry pattern consistent with the strand-displacement replication documented in mammalian mtDNA, suggesting that the mtDNA replication mechanism in mammals may be shared among all vertebrate species, and (4) mitochondrial genomes from primitive forms of metazoans such as the sponge and hydra (representing Porifera and Cnidaria, respectively), as well as those from plants, have strand asymmetry patterns similar to single-origin or multi-origin replications observed in prokaryotes and are drastically different from mitochondrial genomes from other metazoans. This may explain why sponge and hydra mitochondrial genomes, as well as plant mitochondrial genomes, evolves much slower than those from other metazoans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replicating Strand Asymmetry in Bacterial and Eukaryotic Genomes

It is my pleasure as a Guest Editor of Current Genomics to present you with a 'hot topic issue' on DNA replication. DNA replication adopts a set of asymmetric mechanisms. One of them is the division of leading and lagging strands. In 1991, the nucleotide composition bias between the two replicating strands was originally found in genomes of echinoderm and vertebrate mitochondria. In the followi...

متن کامل

New Views on Strand Asymmetry in Insect Mitochondrial Genomes

Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asy...

متن کامل

Replication-Associated Mutational Pressure (RMP) Governs Strand-Biased Compositional Asymmetry (SCA) and Gene Organization in Animal Mitochondrial Genomes

The nucleotide composition of the light (L-) and heavy (H-) strands of animal mitochondrial genomes is known to exhibit strand-biased compositional asymmetry (SCA). One of the possibilities is the existence of a replication-associated mutational pressure (RMP) that may introduce characteristic nucleotide changes among mitochondrial genomes of different animal lineages. Here, we discuss the infl...

متن کامل

Asymmetrical directional mutation pressure in the mitochondrial genome of mammals.

The base composition of 25 complete mammalian mitochondrial (mt) genomes has been analyzed taking into account all three codon positions (P1230 and fourfold degenerate sites (P4FD) of H-strand genes. In the nontranscribed L strand, G is the less represented base and A is the most represented one in all cases, while C and T differ among species. H-strand protein-coding genes show an asymmetric d...

متن کامل

Analysis of the evolutionary forces shaping mitochondrial genomes of a Neotropical malaria vector complex.

Many vectors of human malaria belong to complexes of morphologically indistinguishable cryptic species. Here we report the analysis of the newly sequenced complete mitochondrial DNA molecules from six recognized or putative species of one such group, the Neotropical Anopheles albitarsis complex. The molecular evolution of these genomes had been driven by purifying selection, particularly strong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012